
Migrating Stovepipe Systems to Integrated/Interoperable 
Platforms Using the Technical Reference Model and Object-Oriented 

Operational Architectures

Objective of Case Study
This case study demonstrates how both the Technical Reference Model (TRM) and an 
object-oriented operational view can be used to migrate disparate, stove-piped systems into an 
integrated and interoperable system using the ideas and concepts of spiral development, 
evolutionary acquisition and the DoD Architecture Framework (Figure 8-1). The traditional 
approach to system development, testing, and deployment is to build standalone systems capable 
of supporting specific functionality within a given mission (i.e., space, air, missile, etc.). This 
design strategy laid the foundation for our current redundant system architecture, which supports 
many operational systems and uses different programming languages. Maintaining hardware and 
software upgrades on standalone architecture designs of this nature imposes major limitations. 
These inflexible, “stove-piped” systems cannot meet the growing information exchange 
requirements of today’s operational environment or provide a means to keep pace with evolving 
technology. The Combatant Commanders Integrated Command and Control System (CCIC2S) 
[previously known as the North American Aerospace Defense Command (NORAD)/United 
States Space Command (USSPACECOM) Warfighting Support System (N/UWSS)] project was 
initiated to resolving this problem of multiple, complex systems that retain an abundance of 
overlapping features and functions.

Figure 8-1. Spirally Evolving to Integrated/Interoperable Command and Control
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The initial stages of the CCIC2S program were focused on identifying the baseline operational 
environment, determining redundancies, and describing a vision for migrating current systems. 
The dilemma was in determining a method to examine the operational activities across mission 
areas while realizing or determining functional redundancies within each stove-piped process or 
activity. Utilizing subject matter expertise from within the Department of Defense (DoD) 
community and an object-oriented (OO) methodology, the CCIC2S Core Team identified and 
captured system redundancies and common functions within the existing Cheyenne Mountain 
Operations Center (CMOC) architecture, as well as the unique functions required to perform each 
mission.

The migration concept describes the vision and philosophy for migrating from the current 
complex of systems to a single multi-layered interoperable system that enables warfighters to 
accomplish their mission. The vision is a virtual environment that combines access to all air, 
space, missile, and intelligence mission information with automatic sharing of information with 
any authorized user who needs it worldwide.

Using the DoD TRM and a Unified Modeling Language (UML) based operational and system 
views, the CCIC2S Team has created an overall Department of Defense Architecture Framework 
(DoDAF) model that provides the migration of legacy systems to interoperability and provides 
the maximum level of reusability (Figure 8-2).

Operational View
The CCIC2S Operational Architecture (OA) Team used object-oriented UML to create an OA 
because of its robustness in symbol sets and OO characteristics such as generalization, 
specialization, and inheritance. UML use cases1 may modify (inherit) behavior of a second use 
case; capture data interaction among operators, nodes, and systems; and allocate behavior 
responsibility to systems (UML objects) (Figure 8-3).

Figure 8-2. Reusable Structure of the CCIC2S Architecture Approach
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The UML operational architecture approach provides a comprehensive understanding of 
operational requirements, identifies testing and training requirements earlier in system evolution , 
determines visually recognizable reuse, works with smaller components, provides an open design 
space, and focuses on system interfaces. The UML approach has a very high focus on concepts of 
operations (CONOPS) early in architecture evolution and the visual aspect of use cases provide a 
standardized method to evolve the system requirements. In addition, operators, subject matter 
experts, and stakeholders quickly grasp the UML use case concept. As a result, UML provides a 
higher level of operator understanding of operational needs by identifying use case observable 
results of value; scope; operator, element, center, organization, and system roles; and actor 
specification of a sequence of actions in developing the overall enterprise. Because use cases are 
highly focused on CONOPS as they evolve to requirements, testing and training planning can 
occur earlier in the process. Traditionally, testing and training plans are not assembled until the 
system reaches a maturity level near completion. Because of the nature of use cases, the 
operational analyst can understand the relationships between use case results of value and more 
easily identify design reuse in the operational process. The process also lays the foundation for 
developed components that are smaller and more reusable reducing the cost of potential rework. 
Using the OO approach to OA, the process lays the foundation for system design without 
imposing technological restrictions on the developer’s solution. Finally, the UML process is 

1. Use case—A description of system behavior, in terms of sequences of actions. A use case should yield 
an observable result of value to an actor. A use case contains all alternate flows of events related to 
producing the “observable result of value.” More formally, a use case defines a set of use-case instances 
or scenarios. The specification of a sequence of actions, including variants, that a system (or other entity) 
can perform, interacting with actors of the system.

Figure 8-3. Understanding and Communicating Requirements
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highly focused on system interfaces. By focusing on system interfaces, developers can produce 
UML system views that show product line interaction and traditional use case views to design and 
build the system. The follow sections provide a general overview of how this 
business-reengineering1 concept presents operational views useful in the development of system 
views.

The Operational Architecture Process

The operational architecture process begins by identifying relevant use cases with observable 
results of value (ROV) distinctiveness (e.g., Figure 8-3 depicts Missile Warning 
Information ~ ROV). Identified in the scope of the use case, the results of value are usually data 
objects (the beginning of Logical Data Model ~ OV-7 development) created or maintained by the 
use case activity. Relationships between use cases, if required (e.g., <<extend>>2 or 
<<include>>3), are determined by understanding whether the extended use case is a 
modification (adaptation) of behavior4 of the parent case (base use case) [generally referred to as 
generalization/specialization5] or a reusable use case by the base use case. The general way to 
understand <<extend>> or <<include>> is that we use <<extend>> to “do on a condition 
of a parent case” and <<include>> “to always use a particular use case.” This is the foundation 
of use case relations in an operational level UML model and provides much payback in 
identifying operational patterns and reusability—essential to increase efficiency of the 
development activity. Ultimately, through an iterative process, the use case results in a System 
Operational Sequence (SOS) assigning behavior responsibility to the system to be built 
(Figure 8-8) using the ideas and concepts of the Rational Unified Process for Systems 
Engineering (RUP SE).

Once the use case and its associated scope (to include ROV) are well understood, the architect, 
working with subject matter experts and operators, determine relevant actors and roles involved in 
the use case activity. UML actors can be organizations, centers, nodes, or systems inside 
[denoted by ] or outside [denoted by ] the enterprise. These actors form the relevant nodes 
for developing the Node Connectivity Description (NCD) OV-2 (Figure 8-4).

1. Business Reengineering—To perform business engineering where the work of change includes taking a 
comprehensive view of the entire existing business and think through why you do what you do. You 
question all existing business processes and try to find completely new ways of reconstructing them to 
achieve radical improvements. Other names for this are business process reengineering (BPR) and 
process innovation.

2. Extend—A relationship from an extension use case to a base use case, specifying how the behavior 
defined for the extension use case can be inserted into the behavior defined for the base use case.

3. Include—A relationship from a base use case to an inclusion use case, specifying how the behavior 
defined for the inclusion use case can be inserted into the behavior defined for the base use case.

4. Behavior—The observable effects of an operation or event, including its results.
5. Generalization/specialization—A taxonomic relationship between a more general element and a more 

specific element. The more specific element is fully consistent with the more general element and 
contains additional information. An instance of the more specific element may be used where the more 
general element is allowed.
4



Based on the evolving NCD, again iteratively, the architecture team develops the NCD Sequence 
diagram (Figure 8-5), a view of OV-5 and OV-2, that describes the desired activities, system 
transactions, behaviors between nodes and the underlying capabilities that depict the overall 
desired UML activity. Information exchanges are indicated by the UML message lines (lines with 
arrows) on the collaboration and sequence views (Figures 4 and 5). The collaboration and 
sequence views relate to each other at the node1 and information exchange level.

The process continues until the use case relationship diagram (UCRD) represents the overall 
desired activities and their relationships (item 2 in Figure 8-6). There are other significant views 
such as actor relationships (refined command relationships ~ OV-4), Information Exchange 
Matrix (OV-3) database, and the use case specification which are outside the scope of this case 
study discussion. Together, their views and relationships are the foundation for understanding the 
desired operational behavior to form the operational requirements. The overall relationships 
between the products views are depicted in Figures 5 through 11 showing product relationships 1 
through 12 (shown by numbers in yellow circles).

Figure 8-4. Node Connectivity Description (UML Collaboration Diagram)

1. Node—A representation of an element of architecture that produces, consumes or processes data.
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Figure 8-5. NCD Sequence (UML Sequence Diagram)

Figure 8-6. Creating C4ISR Architecture Framework Operational Views
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Using action verb titles derived from the primary transactions developed in the NCD Sequence 
(Figure 8-5), the architect develops the use case activity diagram (OV-5) [note: one per use case], 
which show the key decision points in the operational flow and provides the view to identify 
consuming and producing data objects for each activity. Again, the details of this process are 
beyond the scope of this case study. However, because of its simplicity and visual depiction of 
operations, the use case activity diagram is a popular view with operators and stakeholders. 
Activity diagrams make it easier to understand the process and they show the operational flow of 
information necessary to support the operational activity and the underlying logical data model 
(~ OV-7) (Figure 8-7).

Once use cases mature to a conceptual level to include ROV and scope, again using UML activity 
models, use cases are abstracted to a UML activity, stereotyped as <<use case>> and form the 
basis for building operational threads through the model. Called Operational Trace Sequences 
(OTS) (~ OV-6c), these high level views are useful for representing key performance parameters 
(KPPs), thresholds and objectives, and for building conceptual operational threads throughout the 
model. Operationally significant data objects and the information they contain form the 
information building block to describe significant operational flow through the use cases. Using 

Figure 8-7. Developing the Logical Data Model (OV-7) 
and Operational Trace Sequences (OV-6c)
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the OTS, we now have a way to represent CONOPS and thread the pieces of the model in a useful 
way. Rational Software views our OTS as a high level scenario1 oriented use case. Once we 
demonstrated how to represent all the necessary DoD Architecture Framework views in UML, we 
initially lacked a way to transition from operational views to system views. As a result, we created 
a new view not discussed by the DoDAF called the System Operational Sequence (SOS).

Transition from Operational View to System View
To solve the transition problem, we added an additional product to those identified by the DoDAF 
to join the operational and system views when using object-oriented techniques. Specifically, we 
developed a UML sequence diagram (Figure 8-8) [Note: one per use case] to explicitly allocate 
system responsibilities (transactions conveying data objects) to systems that satisfy the behavioral 
requirements identified in the operational view. The principles are the same as those discussed in 
the Rational Unified Process for Systems Engineering (RUP SE).

1. Scenario—A described use-case instance, a subset of a use case. A specific sequence of actions that 
illustrates behaviors. A scenario may be used to illustrate an interaction or the execution of a use case 
instance.

Figure 8-8. System Operational Sequence
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This product yielded several key advantages that include:

• Provides a detailed basis for tracing operational activities to system functions, 
contributing the operational activities identified in the SV-5 Operational Activity to 
System Function Traceability Matrix of the system view.

• Allows a single operational view to support multiple systems as well as the force 
providers and the programs that build them.

• Facilitates the expression of lower level concepts of operation.
• Clearly identifies system boundary behavior.

Thus, we can expand the scope of an operational view beyond a single system to better define 
cohesive operations across a whole domain or enterprise and still explicitly allocate behavioral 
requirements to one or more systems.

Use cases provide insight into what operational activities the system must support and to whom 
the supporting system capabilities must be delivered. This provides important system to node 
allocation information in developing the SV-1 System Interface Description and SV-2 System 
Communications Description.

To better facilitate requirements management and provide a way to be tool independent, we 
developed a Rational Rose Script called the System Responsibility Report that pulls all the 
information out of the SOS and builds a comma separated view (CSV) file importable into nearly 
any application (e.g., Excel, Access, Oracle, etc.). The added view also allows additional 
traceability to logical data model elements and provides a means to perform horizontal analysis 
on the requirements. Finally, this additional view provides additional linkage to the system view.

Linkage between the operational and system views is also established through the logical data 
model (OV-7). This model identifies operationally significant objects and their relationships. The 
system view products show inheritance or traceability to these objects via generalization or 
dependency mechanisms. Therefore, they directly influence the objects in the physical data model 
(SV-11) in a loosely coupled manner. In addition, these objects are used on the OTS to describe 
the object dependency in operational threads.

OV-6c, Operational Trace Sequences are used to highlight dynamics associated with key 
operational threads through the architecture (e.g., demonstrate how missions are supported and 
indicate how performance metrics apply to operations). These are associated with SV-10c, System 
Event Descriptions, to support testing as capabilities are fielded. The OTS describes the required 
behavior of the system and the System Event Description identifies what portions of the system 
that provides the behavior. Using these in combination, the testers can determine what behavior to 
test for and what system configuration to test.
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System View
The system view combines the elements of the technical view to provide the behavior described 
in the operational view. We constructed meta-models of the various products to ensure semantic 
linking of the operational and system views. Although our approach can accommodate multiple 
systems and developers, at this time we are primarily focused on the Integrated Space Command 
and Control System (ISC2) contractor. We adopted a layered architecture approach in concert 
with TRM recommendations. The system view draws on product lines and products identified in 
these layers to structure the components that satisfy system responsibilities allocated to the 
system in the operational view (Figure 8-10). The traceability (from the OV generated system 
responsibilities (SOS ~ Figure 8-8) to the system components that provide functionality) is 
accomplished through a recursive set of sequence diagrams, allocating the responsibilities to 
progressively finer grain system elements from product lines through their constituent 
components (see “Rational Unified Process for System Engineering [RUP SE] 1.0, a Rational 
Software White Paper” for discussion of such an approach).

Figure 8-9. Developing System Responsibilities
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This process establishes the architectural and design structure that ensures that the components 
work together to produce the required system behavior needed by operators to conduct operations. 
Design activities such as modeling, coding, other generation representations (e.g., XML) and 
roundtrip engineering then produce the code that completes the system. Using the TRM, 
Specifications and Interface Control Documents are applied at this level of design. Deployment 
views show how the software components are fielded on hardware components as well as how the 
later are interconnected. This becomes a further basis for SV-1, the System Interface Description, 
and SV-2, the System Communications Description.

While the system view describes the “to-be” visionary architecture, we are transitioning from 
legacy systems to future systems that embody the architecture. We must convey how the 
intervening mixture of legacy and future systems are deployed and cooperate to maintain 
continuity of operations over the development period. This is accomplished though a series of 
data driven deployment diagrams based on operational delivery plans.

Figure 8-10. Mapping System Responsibilities to Product Lines
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Figure 8-11. Refining Product Line Allocation to Components
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Transition from System View to Technical View
The nominal interpretation of the Technical Architecture View is a minimal but sufficient 
time-phased list of standard technology specifications applicable to the realization of the system’s 
requirements. Time phasing consists of delineating the current specifications, forecasting the 
major technology standardization trends and updating the associations between standards and 
system architecture elements as the system matures through its evolution. Since the standards are 
selected after related system capabilities are identified, it is natural to think in terms of a 
sequential process in which the specifications are selected after the system architecture has been 
defined. However, the real process, whether formal or not, involves intense analytical interaction 
between the system architecture and technical architecture domains. From the system architecture 
perspective, the design of both the logical and physical aspects is informed and constrained by 
what the architects consider practical in terms of available technology, standards and architectural 
patterns. From the perspective of the technical architecture, the selection of specifications from 
the vast domain of technology specifications must, in turn, be filtered by the context of the system 
architecture.

The success of this highly iterative interaction between views is currently quite dependent on the 
artfulness and experience of the architects. This is evident in light of orthogonal integration of 
emerging C2 standards, such as COE, with other major system architecture views. The future 
hope is that the framework will mature to provide readily accessible architecture patterns and 
technology specifications pre-organized by system domain.

The range of specifications and patterns that must be considered in this process within the domain 
of strategic command and control systems are currently dominated by component container 
middle-ware technology, tiered client-server patterns, object-relational mapped persistence, 
public key infrastructure, and communication technologies that cross the full spectrum of 
geographic distribution. In addition, technologies developed by the DISA Network-Centric 
Enterprise Services (NCES, formerly the DII COE) effort have recently become available for this 
domain. Significant examples of COE standards include workstation and user interface facilities, 
various types of message processing, and software build configuration management mechanisms. 
Further, each of these standard areas is experiencing strong change trends that must be forecast 
against the expected evolutionary life of the system.
13



Traceability from System View to Technical View
The problem of associating the domain’s standards, patterns and their trends with logical and 
physical elements in the system architecture is a relational challenge for both system and 
technical architectures. The ISC2 developer addressed the problem with a few principles.

The first principle is called “greatest scope of technical constraint” in which a technical constraint 
should be mapped to the applicable system architecture element with the largest technical scope. 
The primary benefit of using the greatest scope principle is that the scope hierarchy inherent in the 
system architecture is leveraged to eliminate tedious, redundant, error-prone and probably 
unsustainable mappings between details of a standard and the recursive decomposition of the 
relevant system architecture element. (For example, user interface standards should be mapped to 
the enterprise workstation rather than each individual user interface display, or a security guard 
pattern should be mapped to the entire communication processing system rather than each 
individual guard element).

The second principle is “no orphan standards.” This principle is easy to understand but may be 
difficult to implement given the sheer size of strategic C2 domain. It can be a substantial effort to 
review the mapping to ensure that every standard listed in the technical architecture is indeed 
associated with and appropriately constrains some system architecture element. There are several 
obvious benefits: reduced architect and implementer learning load and reduced workload for 
quality assurance. A more subtle benefit is that building and cross checking the mapping for 
orphans provides an important cognitive review of the architecture.

These principles lead to a simple relational expression for the mapping as follows:

This pattern is easily implemented using any relational tool such as a relational database 
(i.e., Access, Oracle, etc.).

Figure 8-12. Technical Architecture Map

System Technical 

Architecture Map

System Architecture 

Element

Technical Architecture 

Element
** **

Standard Pattern ForecastPhysical 

Element

Logical Element
14



Technical View
In summary in terms of traceability, the operational architecture provides the source of functional 
requirements for the CCIC2S enterprise system. The functionality identified is based on Tier 1 
C2 Battle Management and support mission functions based on traditional (existing) and 
non-traditional (new, emerging) threats. The CCIC2S-ISC2 requirements flow-down process 
allows the capability to be defined, refined, aligned and allocated in terms of functional and 
performance requirements to selected logical systems of interest (associated with current existing 
or future systems). The functionality is subject to factoring, aggregation, consolidation and 
realignment to core system capabilities. The allocations also include the complex cross mapping 
with legacy (existing) systems both those that are and are not migrating and the new/emerging 
systems of interest. This is to focus uniquely on mission applications while enabling the 
reduction/consolidation of infrastructure and common/shared functionality. The next flow down 
association is to the technical architecture.

The JTA provides the DoD with the fundamental building codes for the Warfighter to develop the 
capability for interoperability, seamless information flow and plug-and-play. The CCIC2S 
program assimilated the JTA, the current as is CCIC2S environment and developed a minimum 
set of standards, the CCIC2S TA (CSTA), which is applied to the ISC2 program. This set of 
mandated standards and guidelines provided the starting point for the evolution of the CCIC2S 
enterprise systems architecture. The ISC2 developer took this set of standards and applied 
in-depth industry evaluations, trade studies and comparative analysis with other standards needed 
to achieve the defined system functionality that was allocated to ISC2 system from the CCIC2S 
Operational Architecture. This evaluation continues, to keep the comparative analysis current. It 
provides a constant forward-looking perspective to exploit new standards and technology, a 
constant examination of others standards within the CCIC2S enterprise to consider in the ISC2 
System Architecture, and a constant scrutiny of the need for a corresponding service within the 
ISC2 enterprise system. The technology forecast tracks near and long-term technology trends in 
order to identify promising new technologies that can be effectively applied to reduce ISC2 
evolution risks and costs and increase capability. New technologies are constantly evaluated from 
a cost/benefit standpoint to determine applicability to future ISC2 releases to deliver the most 
capability for the minimum cost.

The ISC2 program falls within the NCES COE environment and also the Tier 1 and lower echelon 
command and control (C2) business area. Currently, the Global Command and Control System 
(GCCS) is emerging as the core Warfighter distributed, federated C4I system. By default, the set 
of capabilities with the DISA-provided COE become the starting point for capabilities mapping 
between the associated system-define capabilities and the DISA-provided COE capabilities. The 
ISC2 developer is tasked to reuse, expand, enhance, tailor or build new COE capabilities 
following the standard DISA processes. The ISC2 developer is exploring enhancing these 
processes to support faster cycles for spiral evolution, for research and development and to meet 
user needs for short/no-notice response mission demands. The ISC2 program open standards 
approach emphasizes architecture constraints and driving requirements in the selected standards 
and technologies, which are defined in the CSTA.
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The demands of legacy system migration provide a challenge to the TV-1 and the TV-2 
Technology Forecast. The ISC2 developer must manage a diverse set of standards that at times 
conflict or cannot be applied until a certain point in the phased migration of legacy systems. And 
this must be done with no impact to on-going mission operations. This complex cross phasing has 
been described as changing an engine while in flight. The ISC2 developer has established a full 
cross-matrixed ISC2 product line with capability deliveries and synchronization points that align 
selected systems migrations/deployments. This is managed in the ISC2 Master Integrated 
Evolution Plan (IMEP). This evolution involves applying the CSTA to enable a core systems 
infrastructure and a core database infrastructure. These areas are further permutated by other 
CCIC2S enterprise systems (outside the current scope of the ISC2 program) that are themselves 
migrating/evolving and which are within the JTA but not completely compliant with the ISC2 TA. 
The ISC2 developer must maintain situational awareness of all external ISC2 interfaces 
(functionally derived from the OA) to apply a standard industry or custom technological solution 
to bridge these systems. The ISC2 developer uses the TV-1 and TV-2 to inform, collaborate or 
guide other programs that need to interface or integrate with ISC2 core systems. This common 
foundation also supports systems-of-systems testing, joint testing, scaleable product line, 
flexibility in evolution and higher fidelity in a capability-component based architecture.

Additional challenges are emerging with the DISA-provided COE and the GCCS environment in 
terms of standards that define specific capabilities of legacy systems that are either not needed or 
used by the GCCS community as a whole (due to mission uniqueness) or require state-of-the-art 
abilities to support real-time information exchanges or capabilities (such as for battle 
management execution and runtime). The ISC2 developer is also working to evolve multiple 
enviroments across various missions to a common framework while being constrained by current 
legacy warfighter processes and warfighting paradigms. Another challenge to a common TA 
application is the distributed nature of the CCIC2S environment into Warfighter environments 
(Combatant Command/Theaters). The ISC2 developer is focusing on instantiating mission 
portals, either as client/server or very normalized COTS/GOTS structures to be able to respond to 
Warfighter mission needs, in some instances regardless of whether the Warfighter is COE 
compliant or non-compliant (such as web and client/server technologies). The ISC2 TV-1 and 
TV-2 documents have to be dynamic “living” documents and identify elements that are 
sustainable and affordable.

The ISC2 developer is evolving a DISA-provided COE compliant system with standard segment 
taxonomy structure aligned with the CSTA. The ISC2 Product Line was also designed from its 
inception to have a similar taxonomy of functionality partitioning aligned with the 
DISA-provided COE architecture including the concepts of API layers, kernel capabilities, 
SHADE, COTS and GOTS, Style Guides and segmentation design. The ISC2 developer is 
evolving the ISC2 system to meet COE compliance in both structures, constructs and processes. 
The development of COE applications and components each offers various options on 
sustainment and processes to follow. The ISC2 Developer is evolving these options successfully 
to facilitate spiral evolution and enhancement of migration.
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Traceability from Technical View to Technical Reference Model

The purpose of the Technical Reference Model (TRM) is to provide a common conceptual 
framework in a defined common vocabulary of the various components of the target system. The 
TRM provides the taxonomy for identifying a discrete set of conceptual layers, entities, interfaces 
and diagrams that provides for the specification of standards. The IMEP, Section 2 – Target 
System Architecture is designed to be aligned with TRM constructs. The ISC2 architecture model 
describes the application layers, data services, distributed operations management services, 
middleware services, network, platform, security, and web services. The ISC2 TSA was designed 
to support the DoD TRM and to provide a common vocabulary to define the ISC2 open systems 
services and capabilities to enable interoperability, scalability, software reuse and facilitate 
product line manageability. The ISC2 Product Line aligns with the CCIC2S operational 
architecture, COE, and TRM constructs. The ISC2 architecture solution is a standards-based 
implementation of an E-Business system design, leveraging mature commercial capabilities to 
bring robust mission capabilities to any authorized Warfighter, anywhere, at any time. It also 
provides a high degree of flexibility and scalability to accommodate changes in CONOPS, 
threats, and the resultant impacts on sensors, internal and external interfaces, mission capabilities, 
and users. The ISC2 net-centric model shown in Figure 8-13 demonstrates how the ISC2 Product 
Line is aligned with the COE segmentation approach.

Figure 8-13. Integrated Space Command and Control Net-Centric Model
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The Enterprise Database is based on a single logical data model (LDM) traced from the CCIC2S 
Operational Architecture. These data elements are standardized according to the DoD Data 
Element Standardization requirements (DoD Std 8320-1), where appropriate. Existing C2 Core 
Reference Sets/Models are used where those definitions and ISC2 requirements coincide. The 
Enterprise Object Model (EOM) defines the hierarchy of the data objects and available methods 
to implement the C2 business rules within the ISC2 system. The example below (Figure 8-14) 
from the IMEP, TSA section, demonstrates the Data Access Interface layer relationship between 
the ISC2 Logical Data Model and the Enterprise Object Model.

The IMEP, Section 4 – Evolution visually provides target representations of the multiple system 
evolution by fiscal year. The system evolution is based on the physical environment including 
localities, devices, systems, communications infrastructures and interfaces both internal and 
external. The IMEP, TSA section also contains visual representations of TRM relationships across 
other common services, infrastructure elements and mission applications.

Conclusion
The Integrated Space Command and Control net-centric model [details depicted in the ISC2 
documentation] represents the initial derivation of a domain C2 reference model using the DoD 
TRM. This model is in the process of being fully transitioned into the DoD Net-Centric Reference 
Model (NCRM) under development by the DoD TRM Working Group. Current service 
definitions of the ISC2 model are consistent with those offered by the NCRM and are easily 
accommodated within that model. As the DoD NCRM is evolved and baselined, it is expected to 

Figure 8-14. ISC2 Logical Data Model and the Enterprise Object Model
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enhance the ISC2 model. This parallels previous efforts in the development of the DoD TRM that 
subsequently resulted in the establishment of a singular referential platform-centric TRM that is 
tailorable for all DoD domains. The expectation in this early stage of model maturation is that 
identification of and convergence to a DoD Net-Centric Reference Model will facilitate the 
development of Net-Centric Enterprise Services (NCES) segments and other reusable software

Our team has developed a method to achieve full DoD Architecture Framework traceability while 
migrating to interoperable systems using the ideas and concepts of the DoD Technical Reference 
Model and object-oriented UML operational and system views. We have overcome many hurdles 
to include end-to-end traceability and the difficult migration problems to spirally evolve 
stove-piped systems to an interoperable common operating picture. Using industry best practice 
and expertise from many leading edge companies, we have teamed to solve a very complex and 
difficult problem that continues to agitate developers throughout the DoD (i.e., ability to trace and 
link requirements across the architectural views—operational, technical and system; and 
integrating the DoD TRM and its methodology to support interoperability and technology 
insertion/transition issues). Our approach, too good to be true by many, is a seamless and 
systematic approach to the complex problems the DoD must face to enter the net-centric solutions 
in the future. According to the Clinger-Cohen Act, we must look to industry for solutions. 
Clinger-Cohen’s vision is proving itself to be a powerful way ahead for the Department of 
Defense.
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